
The right language when you really needed it
(Integration between C language and high-level languages)

Software evaluation parameters

Performance vs productivity

Productivity vs quality

Hardware compatibility vs
 performance

The right language when you really needed it
(Integration between C language and high-level languages)

Productivity
Illusions and smog-sellers

Performance
Wasteland

Hardware requirements
TCO

Hardaware compatibility
Hardware Abstract Layer
System Libraries and language libraries

Quality
Documentation taboo
The fast run to chaos

Control process degree
The possibility to have fast reactions

Software evaluation parameters

The right language when you relaly needed it
(Integration between C language and high-level languages)

Performance vs productivity

Power only where needed

The right language when you really needed it
(Integration between C language and high-level languages)

Productivity vs quality

How can I obtain more productivity?

Using obscure tools to improve
productivity deprives the possibility
to provide a complete support

The right language when you really needed it
(Integration between C language and high-level languages)

HW compatibility vs performance

Why should I use system libraies?
Is the software integrated with the system? (WxWidget)

The right language when you really needed it
(Integration between C language and high-level languages)

Different languages for
different philosophies

Tcl/Tk

Perl

Perl/XS/C vs Tcl/C

The right language when you really needed it
(Integration between C language and high-level languages)

Different languages for
different philosophies

Object Oriented
languages

Lambda function
languages

Procedural
languages

Data driven
 languages

The right language when you really needed it
(Integration between C language and high-level languages)

Tcl/Tk

Introduction to Tcl/Tk:
Tcl programming examples:
Multyplatform structure (file join/file split ...)
Safe slave enviroments (interp)
Basic Tk overview

Tcl weakness:
Coherency (list commands)
Multitasking is performed just by thread

Tcl strengths:
Possibility to enhance the Tcl structures using Tcl
Tcl is easy and powerful
Tcl is available for many different platforms

Tcl and C:
Tcl_CreateCommand

The right language when you really needed it
(Integration between C language and high-level languages)

Tcl and C

C code

interface

destroyer

my C function

Tcl function name

Tcl pckg name

Check for parameters type

#include <tcl.h>
#include <stdio.h>

int cProc (ClientData cd, Tcl_Interp *interp, int argc, CONST char* argv[]) {
 //
 // Questa funzione esegue un addizione fra "a" e "b"
 //
 int out=0, a=0, b=0, e=0;
 char outStr[20];

 if (argc != 3) {
 interp->result = "Error! Usage myAdd <int> <int>";
 e=1;
 } else {
 if (Tcl_GetInt (interp, argv[1], &a) == TCL_OK && Tcl_GetInt (interp, argv[2], &b) == TCL_OK) {
 out=a+b;
 } else {
 interp->result = "Error!The parameters must be integer numbers";
 e=1;
 }
 }

 if (e == 1) {
 return TCL_ERROR;
 } else {
 sprintf (outStr, "%d", out);
 Tcl_SetResult (interp, outStr, TCL_VOLATILE);
 return TCL_OK;
 }
}

int Myadd_Init (Tcl_Interp *interp) {
 //
 // Questa funzione registra la procedura scritta in C
 //
 Tcl_CreateCommand (interp, "myAdd", cProc, (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 if (Tcl_PkgProvide (interp, "myAddPkg", "1.0") != TCL_OK) {
 interp->result = "Error while I am registering the library";
 return TCL_ERROR;
 }
 return TCL_OK;
}

Tcl library

The right language when you really needed it
(Integration between C language and high-level languages)

Perl

Introduction to Perl
Perl programming examples

Perl weakness:
The possibility to write a unreadable code
The trust contract with the user

Tcl strengths:
Coherency (oop)
A lot of existent libraries

Perl and C:
Inline::C
XS

The right language when you really needed it
(Integration between C language and high-level languages)

Perl and C (XS vs Inline)

Inline::C

PerlmyFile.pl

GCC

XS
GCC

myFile.xs

myLibFile.c GCC

myFile.pm

myFile.c

myLibFile.so ObjFile.so

Dynaloader.pm

Perl

X
S

vs

In

li
n

e

The right language when you really needed it
(Integration between C language and high-level languages)

Perl Inline::C

#!/usr/bin/perl

use Inline C;

hello();

__END__
__C__

int hello () {
 printf ("helloword\n");
 return (0);
}

C

Perl

File: prova_inline-01.pl

The right language when you really needed it
(Integration between C language and high-level languages)

XS (h2xs standard model)

[]$ h2xs -n example -A
[]$ ll example

-rw-r--r-- 1 warlock 149 2006-09-29 15:13 Changes
-rw-r--r-- 1 warlock 83 2006-09-29 15:13 MANIFEST
-rw-r--r-- 1 warlock 832 2006-09-29 15:13 Makefile.PL
-rw-r--r-- 1 warlock 1166 2006-09-29 15:13 README
-rw-r--r-- 1 warlock 218 2006-09-29 15:30 example.xs
drwxr-xr-x 2 warlock 4096 2006-09-29 15:23 lib/
-rw-r--r-- 1 warlock 117049 2006-09-29 15:13 ppport.h
drwxr-xr-x 2 warlock 4096 2006-09-29 15:21 t/

[]$ cat example/example.xs

#include <stdio.h>
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

#include "ppport.h"

MODULE = example PACKAGE = example

int
helloword ()
 CODE:
 printf ("Helloword\n");
 RETVAL=0;
 OUTPUT:
 RETVAL

[]# ln -l <example path>/example/blib/arch/../example.so <perl lib path>/.
[]$ perl -I<example path>/example/lib -e 'use example; &example::helloword()'
helloword

Created by h2xs files

Our XS file

The right language when you really needed it
(Integration between C language and high-level languages)

Perl/XS/C vs Tcl/C

The right language when you really needed it
(the package manager)

What should a software package
manager do?

Do you know the installation target?

Wpkg Framework

Wpkg package architecture

Examples

What should a software package
manager do?

The right language when you really needed it
(the package manager)

Installing
Checking for dependences
Installing files in their right positions
Update the system (es: manpage indexes, ldconfig...)

Uninstalling
Checking for broken dependence
Removing the previous installed files
Update the system

Quering
What about the package?
Which file by the pachage?
Which package have originally instelled the file?
Which softwares I have installed?

Verifing
Installed files status

The right language when you really needed it
(the package manager)

Do you know the installation target?

gtk-1 gtk-2 gtk-for-embedde

ARM
Intel
SPARC

pencil
mouse
no-pointer

The right language when you really needed it
(the package manager)

Wpkg Framework

pre_install.sh

post_install.sh

tests

settings

File
 in

sta
llin

g

dynamic_path

extensions

extensions

The right language when you really needed it
(the package manager)

Wpkg package architecture

<app. name>-<ver>.wpkg

pkg.tar pkg.tar.sign

application_files.tar wpkg_infos.txt pre_install.sh post_install.sh uninstall.sh

file1 file2 file3 file<n>

pre_install.sh

post_install.sh

uninstall.sh

wpkg_infos.txt

application_files.tar pkg.tar.sign

<application name>-<version>.wpkg
pkg.tar

Linguaggio giusto al momento giusto
Licence

These slides and the all the example files are covered by GPL licence, you can redistribute it
and/or modify it under the terms of the GNU General Public license as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version. See
the GNU General Public License for more details.

http://www.gnu.org/licenses/gpl.txt

Silvano Catinella
catinella@yahoo.com
+39 348 5631681

Licence

